Question
When a damped harmonic oscillator completes 100 oscillations, its amplitude is reduced to $$\frac{1}{3}$$ of its initial value. What will be its amplitude when it completes 200 oscillations ?
A.
$$\frac{1}{5}$$
B.
$$\frac{2}{3}$$
C.
$$\frac{1}{6}$$
D.
$$\frac{1}{9}$$
Answer :
$$\frac{1}{9}$$
Solution :
In case of damped vibration, amplitude at any instant $$t$$ is given by
$$a = {a_0}\,{e^{ - bt}}$$
where,
$${a_0} = $$ initial amplitude
$$b = $$ damping constant
Case I
$$\eqalign{
& t = 100\,T\,\,{\text{and}}\,\,a = \frac{{{a_0}}}{3} \cr
& \therefore \frac{{{a_0}}}{3} = {a_0}\,{e^{ - b\left( {100\,T} \right)}} \cr
& \Rightarrow {e^{ - 100\,bT}} = \frac{1}{3} \cr} $$
Case II
$$\eqalign{
& t = 200\,T \cr
& a = {a_0}\,{e^{ - bt}} = {a_0}\,{e^{ - b\left( {200\,T} \right)}} \cr
& = {a_0}{\left( {{e^{ - 100\,bT}}} \right)^2} \cr
& = {a_0} \times {\left( {\frac{1}{3}} \right)^2} = \frac{{{a_0}}}{9} \cr} $$
Thus, after 200 oscillations, amplitude will become $$\frac{1}{9}$$ times.