Question

What is the value of $${\left( { - \sqrt { - 1} } \right)^{4n + 3}} + {\left( {{i^{41}} + {i^{ - 257}}} \right)^9},{\text{where }}n \in N?$$

A. $$0$$
B. $$1$$
C. $$i$$  
D. $$ - i$$
Answer :   $$i$$
Solution :
Consider,
$$\eqalign{ & {\left( { - \sqrt { - 1} } \right)^{4n + 3}} + {\left( {{i^{41}} + {i^{ - 257}}} \right)^9} \cr & = \,{\left( { - i} \right)^{4n + 3}} + {\left[ {{{\left( {{i^4}} \right)}^{10}}.{i^1} + {{\left( {{i^3}} \right)}^{ - 85}}.{i^{ - 2}}} \right]^9} \cr & = \,{\left( { - i} \right)^{4n + 3}} + {\left[ {i + \frac{1}{{{{\left( {{i^3}} \right)}^{85}}}}.\frac{1}{{{i^2}}}} \right]^9} \cr & = \,{\left( { - i} \right)^{4n + 3}} + {\left( {i + \frac{1}{i}} \right)^9} \cr & = \, - {\left( { - 1} \right)^{4n + 3}}{\left( i \right)^{4n}}{\left( i \right)^3} + {\left( {i - i} \right)^9} \cr & = - \left( 1 \right)\left( { - i} \right) + 0 \cr & = i \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section