Question

What is the value of $$\int_1^2 {{e^x}\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)} dx\,?$$

A. $$e\left( {\frac{e}{2} - 1} \right)$$  
B. $$e\left( {e - 1} \right)$$
C. $$e - \frac{1}{e}$$
D. $$0$$
Answer :   $$e\left( {\frac{e}{2} - 1} \right)$$
Solution :
$$\eqalign{ & {\text{Let }}I = \int_1^2 {{e^x}\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)} dx \cr & = \int_1^2 {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)} dx\,\,\,\,\,\,\,\left[ {{\text{where}}\,f\left( x \right) = \frac{1}{x}} \right] \cr & = {e^x}\left. {f\left( x \right)} \right|_1^2 \cr & \therefore \,I = \left. {\frac{{{e^x}}}{x}} \right|_1^2 = \frac{{{e^2}}}{2} - e = e\left( {\frac{e}{2} - 1} \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section