Question

What is the sum of the series $$1 + \frac{1}{8} + \frac{{1.3}}{{8.16}} + \frac{{1.3.5}}{{8.16.24}} + .....\,\infty \,?$$

A. $$\frac{2}{{\sqrt 3 }}$$  
B. $${2\sqrt 3 }$$
C. $$\frac{{\sqrt 3 }}{2}$$
D. $$\frac{1}{{2 \sqrt 3 }}$$
Answer :   $$\frac{2}{{\sqrt 3 }}$$
Solution :
As given the series is
$$S = 1 + \frac{1}{8} + \frac{{1.3}}{{8.16}} + \frac{{1.3.5}}{{8.16.24}} + .....\,\infty $$
On comparing this series with
$$S = {\left( {1 + x} \right)^n} = 1 + nx + \frac{{n\left( {n - 1} \right)}}{{2\,!}}{x^2} + .....\,\infty ,$$
we get,
$$\eqalign{ & nx = \frac{1}{8}\,\,\,\,\,.....\left( 1 \right) \cr & {\text{and }}\frac{{n\left( {n - 1} \right)}}{{2\,!}}{x^2} = \frac{{1.3}}{{8.16}}\,\,\,\,\,.....\left( 2 \right) \cr} $$
From Eqs. (1) and (2), we get
$$\eqalign{ & \frac{{\frac{{n\left( {n - 1} \right)}}{{2\,!}}{x^2}}}{{{n^2}{x^2}}} = \frac{{\frac{{1.3}}{{8.16}}}}{{\frac{1}{8} \cdot \frac{1}{8}}} \cr & \Rightarrow \frac{{n - 1}}{{2n}} = \frac{3}{2} \cr & \Rightarrow n - 1 = 3n \cr & \Rightarrow n = - \frac{1}{2} \cr} $$
On putting this value in Eq. (i)
$$\eqalign{ & \Rightarrow \left( { - \frac{1}{2}} \right)x = \frac{1}{8} \cr & \Rightarrow x = - \frac{1}{4}. \cr & {\text{But, }}S = {\left( {1 + x} \right)_n} = {\left( {1 - \frac{1}{4}} \right)^{ - \frac{1}{2}}} \cr & = {\left( {\frac{3}{4}} \right)^{ - \frac{1}{2}}} = \frac{2}{{\sqrt 3 }}. \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section