Question

What is the interior acute angle of the parallelogram whose sides are represented by the vectors $$\frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j + \hat k$$     and $$\frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j + \hat k\,?$$

A. $${60^ \circ }$$  
B. $${45^ \circ }$$
C. $${30^ \circ }$$
D. $${15^ \circ }$$
Answer :   $${60^ \circ }$$
Solution :
$$\eqalign{ & {\text{Let }}a = \frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j + \hat k \cr & {\text{and }}b = \frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j + \hat k \cr & \therefore \,\cos \,\theta = \frac{{a.b}}{{\left| a \right|\left| b \right|}} \cr & \Rightarrow \cos \,\theta = \frac{{\left( {\frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j + \hat k} \right).\left( {\frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j + \hat k} \right)}}{{\sqrt {\frac{1}{2} + \frac{1}{2} + 1} .\sqrt {\frac{1}{2} + \frac{1}{2} + 1} }} \cr & \Rightarrow \cos \,\theta = \frac{1}{2}\left[ {\frac{1}{2} - \frac{1}{2} + 1} \right] \cr & \Rightarrow \cos \,\theta = \frac{1}{2} \cr & \Rightarrow \cos \,\theta = \cos \,{60^ \circ } \cr & \therefore \,\theta = {60^ \circ } \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section