Question

What is the derivative of $${\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} - 1}}{x}} \right)$$     with respect to $${\tan ^{ - 1}}x\,?$$

A. $$0$$
B. $$\frac{1}{2}$$  
C. $$1$$
D. $$x$$
Answer :   $$\frac{1}{2}$$
Solution :
$$\eqalign{ & {\text{Let }}y = {\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {x^2}} - 1}}{x}} \right]{\text{ and }}u = {\tan ^{ - 1}}x \cr & {\text{Put }}x = \tan \,\theta \, \Rightarrow \theta = {\tan ^{ - 1}}x \cr & {\text{Then, }}y = {\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {{\tan }^2}\theta } - 1}}{{\tan \,\theta }}} \right] \cr & = {\tan ^{ - 1}}\left[ {\frac{{\sqrt {{{\sec }^2}\theta } - 1}}{{\tan \,\theta }}} \right] \cr & = {\tan ^{ - 1}}\left[ {\frac{{\sec \,\theta - 1}}{{\tan \,\theta }}} \right] \cr & = {\tan ^{ - 1}}\left[ {\frac{{\frac{1}{{\cos \,\theta }} - 1}}{{\frac{{\sin \,\theta }}{{\cos \,\theta }}}}} \right] \cr & = {\tan ^{ - 1}}\left[ {\frac{{1 - \cos \,\theta }}{{\sin \,\theta }}} \right] \cr & = {\tan ^{ - 1}}\left[ {\frac{{2\,{{\sin }^2}\frac{\theta }{2}}}{{2\,\sin \frac{\theta }{2}.\cos \frac{\theta }{2}}}} \right] \cr & \left( {\because \,1 - \cos \,\theta = 2\,{{\sin }^2}\frac{\theta }{2}{\text{ and }}\sin \,x = 2\,\sin \frac{x}{2}.\,\cos \frac{x}{2}} \right) \cr & = {\tan ^{ - 1}}\left[ {\tan \frac{\theta }{2}} \right] \cr & \Rightarrow \,y = \frac{\theta }{2} \cr & \Rightarrow y = \frac{{{{\tan }^{ - 1}}x}}{2}\,\,\,\,\,\,\left[ {\because \,\theta = {{\tan }^{ - 1}}x} \right] \cr & \Rightarrow y = \frac{u}{2}\,;\,\,\,\frac{{dy}}{{du}} = \frac{1}{2} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section