Question

What is the area of the portion of the curve $$y = \sin \,x,$$   lying between $$x = 0,\,y = 0$$    and $$x = 2\pi \,?$$

A. 1 square unit
B. 2 square units  
C. 4 square units
D. 8 square units
Answer :   2 square units
Solution :
Required area
$$\eqalign{ & = \int\limits_0^{2\pi } {\sin \,x\,dx} \cr & = \left. { - \cos \,x} \right|_0^{2\pi } \cr & = - \cos \,2\pi - \left( { - \cos \,0} \right) \cr & = - \cos \left( {\pi + \pi } \right) + 1 \cr & = - \left[ { - \cos \,\pi } \right] + 1 \cr & = + \cos \left( {\frac{\pi }{2} + \frac{\pi }{2}} \right) + 1 \cr & = \sin \frac{\pi }{2} + 1 \cr & = 1 + 1 \cr & = 2{\text{ sq}}{\text{. units}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section