Question

What is the area of the parallelogram having diagonals $$3\hat i + \hat j - 2\hat k$$   and $$\hat i - 3\hat j + 4\hat k\,?$$

A. $$5\sqrt 5 $$  square units
B. $$4\sqrt 5 $$  square units
C. $$5\sqrt 3 $$  square units  
D. $$15\sqrt 2 $$  square units
Answer :   $$5\sqrt 3 $$  square units
Solution :
Diagonal $${d_1},\,\,\overrightarrow {AC} = 3\hat i + \hat j - 2\hat k$$
Diagonal $${d_2},\,\,\overrightarrow {BD} = \hat i - 3\hat j + 4\hat k$$
3D Geometry and Vectors mcq solution image
Area of parallelogram is $$\frac{1}{2}\left| {\overrightarrow {{d_1}} \times \overrightarrow {{d_2}} } \right|$$
Hence area \[ = \frac{1}{2}\left| \begin{array}{l} \hat i\,\,\,\,\,\,\,\,\,\,\hat j\,\,\,\,\,\,\,\,\,\hat k\\ 3\,\,\,\,\,\,\,\,\,\,1\,\, - 2\\ 1\,\, - 3\,\,\,\,\,\,\,\,\,4 \end{array} \right|\]
$$\eqalign{ & = \frac{1}{2}\left| {\left[ {\hat i\left( {4 - 6} \right) - \hat j\left( {12 + 2} \right) + \hat k\left( { - 9 - 1} \right)} \right]} \right| \cr & = \frac{1}{2}\left| { - 2\hat i - 14\hat j - 10\hat k} \right| \cr & = \frac{1}{2}\sqrt {4 + 196 + 100} \cr & = \frac{{10\sqrt 3 }}{2} \cr & = 5\sqrt 3 {\text{ square units}} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section