Question

What is the angle between the lines $$\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z + 2}}{1}$$     and $$\frac{{x - 1}}{1} = \frac{{2y + 3}}{3} = \frac{{z + 5}}{2}\,?$$

A. $$\frac{\pi }{2}$$  
B. $$\frac{\pi }{3}$$
C. $$\frac{\pi }{6}$$
D. None of the above
Answer :   $$\frac{\pi }{2}$$
Solution :
$$\eqalign{ & {\text{The given lines are : - }} \cr & \frac{{x - 2}}{1} = \frac{{y - \left( { - 1} \right)}}{{ - 2}} = \frac{{z - \left( { - 2} \right)}}{1}{\text{ and}} \cr & \frac{{x - 1}}{1} = \frac{{y - \left( { - \frac{3}{2}} \right)}}{{\frac{3}{2}}} = \frac{{z - \left( { - 5} \right)}}{2}\, \cr & {\text{dr's of Ist line are}}\,:{\text{ - }} \cr & {a_1} = 1,\,{b_1} = - 2,\,{c_1} = 1 \cr & {\text{dr's of IInd line are}}\,{\text{: - }} \cr & {a_2} = 2,\,{b_2} = 3,\,{c_2} = 4 \cr & {\text{Let }}'\theta '\,{\text{be the angle between two lines, then,}} \cr & \cos \,\theta = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }} \cr & \Rightarrow \cos \,\theta = 0 \cr & \Rightarrow \theta = \frac{\pi }{2} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section