Question

What is the acute angle between the planes $$x + y + 2z = 3$$    and $$ - 2x + y - z = 11\,?$$

A. $$\frac{\pi }{5}$$
B. $$\frac{\pi }{4}$$
C. $$\frac{\pi }{6}$$
D. $$\frac{\pi }{3}$$  
Answer :   $$\frac{\pi }{3}$$
Solution :
The given equation of the planes are $$x + y + 2z = 3$$    and $$ - 2x + y - z = 11$$
We know that, the angle between the planes
$$\eqalign{ & {a_1}x + {b_1}y + {c_1}z + {d_1} = 0{\text{ and}} \cr & {a_2}x + {b_2}y + {c_2}z + {d_2} = 0{\text{ is given by}} \cr & \cos \,\theta = \left| {\frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \,\sqrt {a_2^2 + b_2^2 + c_2^2} }}} \right| \cr & {\text{Here, }}{a_1} = 1,\,{b_1} = 1,\,{c_1} = 2,\,{a_2} = - 2,\,{b_2} = 1,\,{c_2} = - 1 \cr & \therefore \,\cos \,\theta = \left| {\frac{{1 \times \left( { - 2} \right) + 1 \times 1 + 2 \times \left( { - 1} \right)}}{{\sqrt {1 + 1 + 4} \,\sqrt {4 + 1 + 1} }}} \right| \cr & \Rightarrow \cos \,\theta = \left| {\frac{{ - 2 + 1 - 2}}{{\sqrt 6 \,\sqrt 6 }}} \right| \cr & \Rightarrow \cos \,\theta = \left| {\frac{3}{6}} \right| \cr & \Rightarrow \cos \,\theta = \frac{1}{2} \cr & \Rightarrow \cos \,\theta = \cos \frac{\pi }{3} \cr & \Rightarrow \theta = \frac{\pi }{3}\, \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section