Question

What is $${\left[ {\frac{{\sin \frac{\pi }{6} + i\left( {1 - \cos \frac{\pi }{6}} \right)}}{{\sin \frac{\pi }{6} - i\left( {1 - \cos \frac{\pi }{6}} \right)}}} \right]^3}$$    where $$i = \sqrt { - 1} ,$$  equal to ?

A. $$1$$
B. $$- 1$$
C. $$i$$  
D. $$ - i$$
Answer :   $$i$$
Solution :
$$\eqalign{ & {\left[ {\frac{{\sin \frac{\pi }{6} + i\left( {1 - \cos \frac{\pi }{6}} \right)}}{{\sin \frac{\pi }{6} - i\left( {1 - \cos \frac{\pi }{6}} \right)}}} \right]^3} \cr & = {\left[ {\frac{{2\sin \frac{\pi }{{12}}\cos \frac{\pi }{{12}} + i\left( {2{{\sin }^2}\frac{\pi }{{12}}} \right)}}{{2\sin \frac{\pi }{{12}}\cos \frac{\pi }{{12}} - i\left( {2{{\sin }^2}\frac{\pi }{{12}}} \right)}}} \right]^3} \cr & = {\left[ {\frac{{\cos \frac{\pi }{{12}} + i\sin \frac{\pi }{{12}}}}{{\cos \frac{\pi }{{12}} - i\sin \frac{\pi }{{12}}}}} \right]^3} \cr & = {\left( {\frac{{{e^{i\frac{\pi }{{12}}}}}}{{{e^{ - i\frac{\pi }{12}}}}}} \right)^3} \cr & = {\left( {{e^{i\frac{\pi }{6}}}} \right)^3} \cr & = {e^{i \times 3 \times \frac{\pi }{6}}} \cr & = {e^{i\frac{\pi }{2}}} \cr & = \cos \frac{\pi }{2} + i\sin \frac{\pi }{2} \cr & = i \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section