Question

What is $$\sin \left[ {{{\cot }^{ - 1}}\left\{ {\cos \left( {{{\tan }^{ - 1}}x} \right)} \right\}} \right]$$      where $$x > 0,$$  equal to ?

A. $$\sqrt {\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}} $$  
B. $$\sqrt {\frac{{\left( {{x^2} + 2} \right)}}{{\left( {{x^2} + 1} \right)}}} $$
C. $${\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}}$$
D. $${\frac{{\left( {{x^2} + 2} \right)}}{{\left( {{x^2} + 1} \right)}}}$$
Answer :   $$\sqrt {\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}} $$
Solution :
$$\eqalign{ & {\text{Let, }}\alpha = {\tan ^{ - 1}}x \cr & \Rightarrow \tan \alpha = x \cr & {\text{then }}\,\cos \alpha = \frac{1}{{\sqrt {1 + {{\tan }^2}\alpha } }} = \frac{1}{{\sqrt {1 + {x^2}} }} \cr & \Rightarrow \cos \left. {\left( {{{\tan }^{ - 1}}x} \right)} \right\} = \left\{ {\frac{1}{{\sqrt {1 + {x^2}} }}} \right\} \cr & {\text{So}},\,\,{\cot ^{ - 1}}\cos \left( {{{\tan }^{ - 1}}x} \right) = {\cot ^{ - 1}}\left\{ {\frac{1}{{\sqrt {1 + {x^2}} }}} \right\} \cr & {\text{Let, }}{\cot ^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {x^2}} }}} \right) = \beta \cr & \Rightarrow \cot \beta = \frac{1}{{\sqrt {1 + {x^2}} }} \cr & {\text{and }}\,\sin \beta = \frac{1}{{\sqrt {1 + {{\cot }^2}\beta } }} \cr & = \frac{{\sqrt {1 + {x^2}} }}{{\sqrt {{x^2} + 1 + 1} }} = \sqrt {\frac{{{x^2} + 1}}{{{x^2} + 2}}} \cr & \Rightarrow \sin \left[ {{{\cot }^{ - 1}}\left\{ {\cos \left( {{{\tan }^{ - 1}}} \right)} \right\}} \right] = \sqrt {\frac{{{x^2} + 1}}{{{x^2} + 2}}} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section