Question
      
        What is a vector of unit length orthogonal to both the vectors $$\hat i + \hat j + \hat k$$    and $$2\hat i + 3\hat j - \hat k\,?$$      
       A.
        $$\frac{{ - 4\hat i + 3\hat j - \hat k}}{{\sqrt {26} }}$$              
       B.
        $$\frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }}$$                 
              
       C.
        $$\frac{{ - 3\hat i + 2\hat j - \hat k}}{{\sqrt {14} }}$$              
       D.
        $$\frac{{ - 3\hat i + 2\hat j + \hat k}}{{\sqrt {14} }}$$              
            
                Answer :  
        $$\frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }}$$      
             Solution :
        \[\begin{array}{l}
\overrightarrow A  = \hat i + \hat j + \hat k\\
\overrightarrow B  = 2\hat i + 3\hat j - \hat k\\
\overrightarrow A  \times \overrightarrow B  = \left| \begin{array}{l}
\hat i\,\,\,\,\hat j\,\,\,\,\,\,\,\,\hat k\\
1\,\,\,\,\,1\,\,\,\,\,\,\,\,1\\
2\,\,\,\,3\,\, - 1
\end{array} \right|\\
 = \hat i\left( { - 1 - 3} \right) - \hat j\left( { - 1 - 2} \right) + \hat k\left( {3 - 2} \right)\\
 =  - 4\hat i + 3\hat j + \hat k
\end{array}\]
Vector of unit length orthogonal to both the vectors $$\overrightarrow A $$ and $$\overrightarrow B $$
$$\eqalign{
  &  = \frac{{\overrightarrow A  \times \overrightarrow B }}{{\left| {\overrightarrow A  \times \overrightarrow B } \right|}}  \cr 
  &  = \frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {16 + 9 + 1} }}  \cr 
  &  = \frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }} \cr} $$