Question

What are the direction ratios of the line determined by the planes $$x - y + 2z = 1$$    and $$x + y - z = 3\,?$$

A. $$\left( { - 1,\,3,\,2} \right)$$  
B. $$\left( { - 1,\, - 3,\,2} \right)$$
C. $$\left( {2,\,1,\,3} \right)$$
D. $$\left( {2,\,3,\,2} \right)$$
Answer :   $$\left( { - 1,\,3,\,2} \right)$$
Solution :
The intersection of given plane is
$$\eqalign{ & x - y + 2z - 1 + \lambda \left( {x + y - z - 3} \right) = 3 \cr & \Rightarrow x\left( {1 + \lambda } \right) + y\left( {\lambda - 1} \right) + z\left( {2 - \lambda } \right) - 3\lambda - 1 = 0 \cr} $$
DR’s of normal to the above plane is $$\left( {1 + \lambda ,\,\lambda - 1,\,2 - \lambda } \right)$$
By taking option (A)
$$\eqalign{ & - 1\left( {1 + \lambda } \right) + 3\left( {\lambda - 1} \right) + 2\left( {2 - \lambda } \right) = 0 \cr & \Rightarrow - 1 - \lambda + 3\lambda - 3 + 4 - 2\lambda = 0 \cr & \Rightarrow 0 = 0{\text{ which is true}}{\text{.}} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section