Question
What are the conditions for an ideal solution which obeys Raoult's law over the entire range of concentration ?
A.
$${\Delta _{{\text{mix}}}}H = 0,{\Delta _{{\text{mix}}}}V = 0,$$ $${P_{{\text{Total}}}} = p_{\text{A}}^{\text{o}}{x_A} + p_B^{\text{o}}{x_B}$$
B.
$${\Delta _{{\text{mix}}}}H = + ve,{\Delta _{{\text{mix}}}}V = 0,$$ $${P_{{\text{Total}}}} = p_{\text{A}}^{\text{o}}{x_A} + p_B^{\text{o}}{x_B}$$
C.
$${\Delta _{{\text{mix}}}}H = 0,{\Delta _{{\text{mix}}}}V = + ve,$$ $${P_{{\text{Total}}}} = p_{\text{A}}^{\text{o}}{x_A} + p_B^{\text{o}}{x_B}$$
D.
$${\Delta _{{\text{mix}}}}H = 0,{\Delta _{{\text{mix}}}}V = 0,{P_{{\text{Total}}}} = p_B^{\text{o}}{x_B}$$
Answer :
$${\Delta _{{\text{mix}}}}H = 0,{\Delta _{{\text{mix}}}}V = 0,$$ $${P_{{\text{Total}}}} = p_{\text{A}}^{\text{o}}{x_A} + p_B^{\text{o}}{x_B}$$
Solution :
For an ideal solution $$\Delta H$$ and $$\Delta V$$ for mixing should be zero. $${P_{{\text{Total}}}} = {p_A} + {p_B}$$ and $$A - A,B - B$$ and $$A - B$$ interactions are nearly same.