Question

Value of $$2\left( {{{\sin }^6}\theta + {{\cos }^6}\theta } \right) - 3\left( {{{\sin }^4}\theta + {{\cos }^4}\theta } \right) + 1{\text{ is :}}$$

A. 2
B. 0  
C. 4
D. 6
Answer :   0
Solution :
We have,
$$\eqalign{ & 2\left( {{{\sin }^6}\theta + {{\cos }^6}\theta } \right) - 3\left( {{{\sin }^4}\theta + {{\cos }^4}\theta } \right) + 1 \cr & = 2\left[ {{{\left( {{{\sin }^2}\theta } \right)}^3} + {{\left( {{{\cos }^2}\theta } \right)}^3}} \right] - 3\left( {{{\sin }^4}\theta + {{\cos }^4}\theta } \right) + 1 \cr & = 2\left[ {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta \,{{\cos }^2}\theta } \right)} \right] - 3\left( {{{\sin }^4}\theta + {{\cos }^4}\theta } \right) + 1 \cr & = \left[ {2\,{{\sin }^4}\theta + 2\,{{\cos }^4}\theta - 2\,{{\sin }^2}\theta \,{{\cos }^2}\theta } \right] - 3\,{\sin ^4}\theta - 3\,{\cos ^4}\theta + 1 \cr & = - {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} + 1 \cr & = - {1^2} + 1 = - 1 + 1 = 0 \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section