Solution :
Given, that two stones of masses $$m$$ and $$2\,m$$ are whirled in horizontal circles, the heavier one in a radius $$\frac{r}{2}$$ and lighter one in radius $$r$$ as shown in figure.

As, lighter stone is $$n$$ times that of the value of heavier stone when they experience same centripetal forces, we get
$$\eqalign{
& {\left( {{F_c}} \right)_{{\text{heavier}}}} = {\left( {{F_c}} \right)_{{\text{lighter}}}} \cr
& \Rightarrow \frac{{2m{{\left( v \right)}^2}}}{{\left( {\frac{r}{2}} \right)}} = \frac{{m{{\left( {nv} \right)}^2}}}{r} \cr
& \Rightarrow {n^2} = 4 \Rightarrow n = 2 \cr} $$