Solution :

$$I = \frac{{2\varepsilon }}{{R + {R_1} + {R_2}}}$$
Potential difference across second cell $$ = V = \varepsilon - I{R_2} = 0$$
$$\eqalign{
& \varepsilon - \frac{{2\varepsilon }}{{R + {R_1} + {R_2}}}.{R_2} = 0 \cr
& R + {R_1} + {R_2} - 2{R_2} = 0 \cr
& R + {R_1} - {R_2} = 0\,\,\,\,\,\,\,\,\,\,\,\,\therefore R = {R_2} - {R_1} \cr} $$