Solution :
Equation of $$S.H.M.$$ is given by
$$x = A\sin \left( {\omega t + \delta } \right)$$
$$\left( {\omega t + \delta } \right)$$ is called phase.

$$\eqalign{
& {\text{When}}\,\,x = \frac{A}{2},\,{\text{then}}\,\sin \left( {\omega t + \delta } \right) = \frac{1}{2} \cr
& \Rightarrow \omega t + \delta = \frac{\pi }{6} \cr
& {\text{or}}\,\,{\phi _1} = \frac{\pi }{6} \cr
& {\text{For second particle,}} \cr
& {\phi _2} = \pi - \frac{\pi }{6} = \frac{{5\pi }}{6} \cr
& \therefore \phi = {\phi _2} - {\phi _1} = \frac{{4\pi }}{6} = \frac{{2\pi }}{3} \cr} $$