Question

Two common tangents to the circle $${x^2} + {y^2} = 2{a^2}$$   and parabola $${y^2} = 8ax$$   are-

A. $$x = \pm \left( {y + 2a} \right)$$
B. $$y = \pm \left( {x + 2a} \right)$$  
C. $$x = \pm \left( {y + a} \right)$$
D. $$y = \pm \left( {x + a} \right)$$
Answer :   $$y = \pm \left( {x + 2a} \right)$$
Solution :
Any tangent to the parabola $${y^2} = 8ax$$   is
$$y = mx + \frac{{2a}}{m}.....({\text{i}})$$
If (i) is a tangent to the circle, $${x^2} + {y^2} = 2{a^2}$$   then,
$$\eqalign{ & \sqrt 2 a = \pm \frac{{2a}}{{m\sqrt {{m^2} + 1} }} \cr & \Rightarrow {m^2}\left( {1 + {m^2}} \right) = 2 \cr & \Rightarrow \left( {{m^2} + 2} \right)\left( {{m^2} - 1} \right) = 0 \cr & \Rightarrow m = \pm 1 \cr} $$
So from (i), $$y = \pm \left( {x + 2a} \right)$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section