Question

Three forces $$\overrightarrow P ,\,\overrightarrow Q $$  and $$\overrightarrow R ,$$ each of 15 units, act along $$AB,\,BC$$   and $$CA$$  respectively. The position vectors of $$A,\,B$$  and $$C$$ are $$\overrightarrow {OA} = 2\overrightarrow i - \overrightarrow j + 3\overrightarrow k ,\,\overrightarrow {OB} = 5\overrightarrow i + 3\overrightarrow j - 2\overrightarrow k $$         and $$\overrightarrow {OC} = - 2\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k $$     respectively. The resultant force vector is :

A. $$\left( {12 + \frac{9}{{\sqrt 2 }} - 7\sqrt 3 } \right)\overrightarrow i - \left( {9 - 6\sqrt 2 + \sqrt 3 } \right)\overrightarrow j + \left( {5\sqrt 3 - \frac{{15}}{{\sqrt 2 }}} \right)\overrightarrow k $$  
B. $$\left( {12 + \frac{9}{{\sqrt 2 }} - 7\sqrt 3 } \right)\overrightarrow i + \left( {9 - 6\sqrt 3 + \sqrt 3 } \right)\overrightarrow j + \left( {\frac{{15}}{{\sqrt 2 }} - 5\sqrt 3 } \right)\overrightarrow k $$
C. $$75\overrightarrow i + 60\overrightarrow j + 60\overrightarrow k $$
D. none of these
Answer :   $$\left( {12 + \frac{9}{{\sqrt 2 }} - 7\sqrt 3 } \right)\overrightarrow i - \left( {9 - 6\sqrt 2 + \sqrt 3 } \right)\overrightarrow j + \left( {5\sqrt 3 - \frac{{15}}{{\sqrt 2 }}} \right)\overrightarrow k $$
Solution :
$$\eqalign{ & \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = 3\overrightarrow i + 4\overrightarrow j - 5\overrightarrow k \cr & \therefore \,\frac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} = \frac{1}{{5\sqrt 2 }}\left( {3\overrightarrow i + 4\overrightarrow j - 5\overrightarrow k } \right) \cr & \therefore \,\overrightarrow P = 15.\frac{1}{{5\sqrt 2 }}\left( {3\overrightarrow i + 4\overrightarrow j - 5\overrightarrow k } \right) = \frac{3}{{\sqrt 2 }}\left( {3\overrightarrow i + 4\overrightarrow j - 5\overrightarrow k } \right) \cr & {\text{Similarly, }}\overrightarrow Q = 15.\frac{{\overrightarrow {BC} }}{{\left| {\overrightarrow {BC} } \right|}} = 15.\frac{{ - 7\overrightarrow i - \overrightarrow j + 5\overrightarrow k }}{{5\sqrt 3 }} = \sqrt 3 \left( { - 7\overrightarrow i - \overrightarrow j + 5\overrightarrow k } \right){\text{, and}} \cr & \overrightarrow R = 15.\frac{{\overrightarrow {CA} }}{{\left| {\overrightarrow {CA} } \right|}} = 15.\frac{{4\overrightarrow i - 3\overrightarrow j }}{5} = 3\left( {4\overrightarrow i - 3\overrightarrow j } \right) \cr & \therefore \,{\text{the resultant}} = \overrightarrow P + \overrightarrow Q + \overrightarrow R \cr & = \left( {12 + \frac{9}{{\sqrt 2 }} - 7\sqrt 3 } \right)\overrightarrow i + \left( { - 9 + 6\sqrt 2 - \sqrt 3 } \right)\overrightarrow j + \left( {5\sqrt 3 - \frac{{15}}{{\sqrt 2 }}} \right)\overrightarrow k . \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section