Question
The velocity of a particle is $$v = {v_0} + gt + f{t^2}.$$ Its position is $$x=0$$ at $$t=0,$$ then its displacement after unit time ($$t=1$$ ) is-
A.
$${v_0} + \frac{g}{2} + f$$
B.
$${v_0} + 2g + 3f$$
C.
$${v_0} + \frac{g}{2} + \frac{f}{3}$$
D.
$${v_0} + g + f$$
Answer :
$${v_0} + \frac{g}{2} + \frac{f}{3}$$
Solution :
$$\eqalign{
& {\text{We know that,}} \cr
& v = \frac{{dx}}{{dt}} \Rightarrow dx = v\,dt \cr
& {\text{Integrating}},\int\limits_0^x {dx} = \int\limits_0^t {v\,dt} \cr
& {\text{or}},\,x = \int\limits_0^t {\left( {{v_0} + gt + f{t^2}} \right)dt = \left[ {{v_0}t + \frac{{g{t^2}}}{2} + \frac{{f{t^3}}}{3}} \right]_0^t} \cr
& {\text{or}},\,x = {v_0}t + \frac{{g{t^2}}}{2} + \frac{{f{t^3}}}{3} \cr
& {\text{At }}t = 1,\,\,\,x = {v_0} + \frac{g}{2} + \frac{f}{3}. \cr} $$