Question

The vectors $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   and $$\overrightarrow d $$ are such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d $$    and $$\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d .$$    Which of the following is/are correct ?
$$\eqalign{ & 1.\,\left( {\overrightarrow a - \overrightarrow d } \right) \times \left( {\overrightarrow b - \overrightarrow c } \right) = \overrightarrow 0 \cr & 2.\,\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = \overrightarrow 0 \cr} $$
Select the correct answer using the code given below :

A. $$1$$ only
B. $$2$$ only
C. Both $$1$$ and $$2$$  
D. Neither $$1$$ nor $$2$$
Answer :   Both $$1$$ and $$2$$
Solution :
$$\eqalign{ & \left( {\overrightarrow a - \overrightarrow d } \right) \times \left( {\overrightarrow b - \overrightarrow c } \right) \cr & = \overrightarrow a \times \overrightarrow b - \overrightarrow d \times \overrightarrow b - \overrightarrow a \times \overrightarrow c + \overrightarrow d \times \overrightarrow c \cr & = \overrightarrow c \times \overrightarrow d - \overrightarrow d \times \overrightarrow b - \overrightarrow b \times \overrightarrow d - \overrightarrow c \times \overrightarrow d \cr & = - \overrightarrow d \times \overrightarrow b + \overrightarrow d \times \overrightarrow b \cr & = 0 \cr & {\text{Again }}\left( {\overrightarrow a \times \overrightarrow b } \right) = \left( {\overrightarrow c \times \overrightarrow d } \right){\text{ given}} \cr & \Rightarrow \left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = \left( {\overrightarrow c \times \overrightarrow d } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = 0\,\,\,\,\,\left( {{\text{as }}\overrightarrow a \times \overrightarrow a = 0} \right) \cr} $$
So both $$\left( 1 \right)$$ and $$\left( 2 \right)$$ are correct.

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section