Question

The vectors $$\left( {2\hat i - m\hat j + 3m\hat k} \right)\& \left\{ {\left( {1 + m} \right)\hat i - 2m\hat j + \hat k} \right\}$$         include an acute angle for :

A. all values of $$m$$
B. $$m < - 2{\text{ or }}m > - \frac{1}{2}$$  
C. $$m = - \frac{1}{2}$$
D. $$m\, \in \left[ { - 2,\, - \frac{1}{2}} \right]$$
Answer :   $$m < - 2{\text{ or }}m > - \frac{1}{2}$$
Solution :
$$\overrightarrow a = 2\hat i - m\hat j + 3m\hat k\,\,\& \,\,\overrightarrow b = \left( {1 + m} \right)\hat i - 2m\hat j + \hat k$$
and if angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is an acute, then $$\overrightarrow a .\overrightarrow b > 0$$
$$\eqalign{ & \Rightarrow 2\left( {1 + m} \right) + 2{m^2} + 3m > 0 \cr & \Rightarrow 2{m^2} + 5m + 2 > 0 \cr & \Rightarrow 2{m^2} + 4m + m + 2 > 0 \cr & \Rightarrow \left( {2m + 1} \right)\left( {m + 2} \right) > 0 \cr & \Rightarrow m < - 2{\text{ or }}m > - \frac{1}{2} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section