Question

The vector $$\overrightarrow c $$ directed along the bisectors of the angle between the vectors $$\overrightarrow a = 7\hat i - 4\hat j - 4\hat k,\,\overrightarrow b = - 2\hat i - \hat j + 2\hat k$$        and $$\left| {\overrightarrow c } \right| = 3\sqrt 6 $$   is given by :

A. $$\hat i - 7\hat j + 2\hat k$$  
B. $$\hat i + 7\hat j - 2\hat k$$
C. $$\hat i + 7\hat j + 2\hat k$$
D. $$\hat i + 7\hat j + 3\hat k$$
Answer :   $$\hat i - 7\hat j + 2\hat k$$
Solution :
3D Geometry and Vectors mcq solution image
$$\eqalign{ & OQ = PQ = \lambda \,\,\,\left( {{\text{say}}} \right)\,; \cr & \overrightarrow {OP} = \overrightarrow {OQ} + \overrightarrow {QP} \,;\,\overrightarrow c = \lambda \hat a + \lambda \hat b \cr} $$
Let $${\hat a}$$ and $${\hat b}$$ be unit vectors along $$\overrightarrow a $$ and $$\overrightarrow b $$ respectively,
then, $$\hat a = \frac{1}{9}\left( {7\hat i - 4\hat j - 4\hat k} \right)$$     and $$\hat b = \frac{1}{3}\left( { - 2\hat i - \hat j + 2\hat k} \right)$$
The required vector
$$\overrightarrow c = \lambda \left( {\hat a + \hat b} \right),$$    where $$\lambda $$ is a scalar
$$\eqalign{ & \Rightarrow \overrightarrow c = \lambda \left( {\frac{1}{9}\hat i - \frac{7}{9}\hat j + \frac{2}{9}\hat k} \right) \cr & \Rightarrow {\left| {\overrightarrow c } \right|^2} = {\lambda ^2}\left( {\frac{1}{{81}} + \frac{{49}}{{81}} + \frac{4}{{81}}} \right) \cr & \Rightarrow {\left| {\overrightarrow c } \right|^2} = \frac{{54}}{{81}}{\lambda ^2} \cr & \Rightarrow {\left( {3\sqrt 6 } \right)^2} = \frac{{54}}{{81}}{\lambda ^2} \cr & \Rightarrow {\lambda ^2} = 81 \cr & \Rightarrow \lambda = \pm 9 \cr} $$
Hence, $$\overrightarrow c = \left( {\hat i - 7\hat j + 2\hat k} \right)$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section