Question

The $$+ ve$$  integral solution of $${\tan ^{ - 1}}x + {\cos ^{ - 1}}\frac{y}{{\sqrt {1 + {y^2}} }} = {\sin ^{ - 1}}\frac{3}{{\sqrt {10} }}{\text{ is}}$$

A. $$x = 1,y = 2;x = 2,y = 7$$  
B. $$x = 1,y = 3;x = 2,y = 4$$
C. $$x = 0,y = 0;x = 3,y = 4$$
D. None of these
Answer :   $$x = 1,y = 2;x = 2,y = 7$$
Solution :
$${\tan ^{ - 1}} + {\cos ^{ - 1}}\left( {\frac{y}{{1 + {y^2}}}} \right) = {\sin ^{ - 1}}\left( {\frac{3}{{\sqrt {10} }}} \right)$$
We will convert this equation in $${\tan ^{ - 1}}$$  from
$$\eqalign{ & \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {\frac{1}{y}} \right) = {\tan ^{ - 1}}3 \cr & \Rightarrow {\tan ^{ - 1}}\left( {\frac{1}{y}} \right) = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}x \cr & \Rightarrow {\tan ^{ - 1}}\left( {\frac{1}{y}} \right) = {\tan ^{ - 1}}\left( {\frac{{3 - x}}{{1 + 3x}}} \right) \cr & \Rightarrow \frac{1}{y} = \frac{{3 - x}}{{1 + 3x}} \cr & \Rightarrow y = \frac{{1 + 3x}}{{3 - x}} \cr} $$
As, we have to find positive integral values, so $$x$$ can have only two valus 1 and 2.
$$\eqalign{ & {\text{When }}x = 1,\,y = \frac{{1 + 3}}{2} \Rightarrow y = 2 \cr & {\text{When }}x = 2,\,y = \frac{{1 + 6}}{1} \Rightarrow y = 7 \cr} $$
So, these are two possible solutions for the given equation.

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section