Question

The values of $$\theta \in \left( {0,2\pi } \right)$$   for which $$2{\sin ^2}\theta - 5\sin \theta + 2 > 0,$$     are

A. $$\left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$  
B. $$\left( {\frac{\pi }{8},\frac{{5\pi }}{6}} \right)$$
C. $$\left( {0,\frac{\pi }{8}} \right) \cup \left( {\frac{\pi }{6},\frac{{5\pi }}{6}} \right)$$
D. $$\left( {\frac{{41\pi }}{48},\pi } \right)$$
Answer :   $$\left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$
Solution :
$$\eqalign{ & 2{\sin ^2}\theta - 5\sin \theta + 2 > 0 \cr & \Rightarrow \,\,\left( {\sin \theta - 2} \right)\left( {2\sin \theta - 1} \right) > 0 \cr & \Rightarrow \,\,\sin \theta < \frac{1}{2}\,\,\,\,\,\,\left[ {\because \,\, - 1 \leqslant \sin \theta \leqslant 1} \right] \cr} $$
Trigonometric Ratio and Identities mcq solution image
From graph, we get $$x \in \left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section