Question

The values of $$p$$ and $$q$$ for which the function \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{\sin \left( {p + 1} \right)x + \sin \,x}}{x},\,x < 0\\ q,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0\\ \frac{{\sqrt {x + {x^2}} - \sqrt x }}{{{x^{\frac{3}{2}}}}},\,\,\,\,\,\,\,\,\,x > 0 \end{array} \right.\]        is continuous for all $$x$$ in $$R,$$ are-

A. $$p = \frac{5}{2},\,\,q = \frac{1}{2}$$
B. $$p = - \frac{3}{2},\,\,q = \frac{1}{2}$$  
C. $$p = \frac{1}{2},\,\,q = \frac{3}{2}$$
D. $$p = \frac{1}{2},\,\,q = - \frac{3}{2}$$
Answer :   $$p = - \frac{3}{2},\,\,q = \frac{1}{2}$$
Solution :
$$\eqalign{ & {\bf{L}}{\bf{.H}}{\bf{.L}}{\bf{.}} = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left\{ {\left( {p + 1} \right)\left( { - h} \right)} \right\} - \sin \left( { - h} \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - \sin \left( {p + 1} \right)h}}{{ - h}} + \frac{{\sin \left( { - h} \right)}}{{ - h}} \cr & = p + 1 + 1 \cr & = p + 2 \cr & {\bf{R}}{\bf{.H}}{\bf{.L}} = \mathop {\lim }\limits_{x \to {\sigma ^ + }} f\left( x \right) \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {1 + h} - 1}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{1}{{\left( {\sqrt {1 + h} + 1} \right)}} \cr & = \frac{1}{2} \cr & {\text{and }}f\left( 0 \right) = q\,\,\,\,\, \Rightarrow p = - \frac{3}{2},\,\,q = \frac{1}{2} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section