Question

The value of $$\mathop {\lim }\limits_{x \to \infty } \frac{{{{\left( {{2^{{x^n}}}} \right)}^{\frac{1}{{{e^x}}}}} - {{\left( {{3^{{x^n}}}} \right)}^{\frac{1}{{{e^x}}}}}}}{{{x^n}}}$$     (where $$n\, \in \,N$$  ) is :

A. $$\log \,n\left( {\frac{2}{3}} \right)$$
B. $$0$$  
C. $$n\,\log \,n\left( {\frac{2}{3}} \right)$$
D. not defined
Answer :   $$0$$
Solution :
$$\eqalign{ & L = \mathop {\lim }\limits_{x \to \infty } \frac{{{{\left( {{2^{{x^n}}}} \right)}^{\frac{1}{{{e^x}}}}} - {{\left( {{3^{{x^n}}}} \right)}^{\frac{1}{{{e^x}}}}}}}{{{x^n}}} \cr & \,\,\,\,\, = \mathop {\lim }\limits_{x \to \infty } \frac{{{{\left( 3 \right)}^{\frac{{{x^n}}}{{{e^x}}}}}\left( {{{\left( {\frac{2}{3}} \right)}^{\frac{{{x^n}}}{{{e^x}}}}} - 1} \right)}}{{{x^n}}} \cr & {\text{Now, }}\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{e^x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{n!}}{{{e^x}}} = 0 \cr & \left( {{\text{Applying L'Hospital rule }}n{\text{ times}}} \right) \cr & {\text{Hence,}} \cr & L = \mathop {\lim }\limits_{x \to \infty } {\left( 3 \right)^{\frac{{{x^n}}}{{{e^x}}}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {{{\left( {\frac{2}{3}} \right)}^{\frac{{{x^n}}}{{{e^x}}}}} - 1} \right)}}{{\frac{{{x^n}}}{{{e^x}}}}}\mathop {\lim }\limits_{x \to \infty } \frac{1}{{{e^x}}} \cr & \,\,\,\,\, = 1 \times \log \left( {\frac{2}{3}} \right) \times 0 \cr & \,\,\,\,\, = 0 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section