Question

The value of the integral $$\int_{ - 1}^3 {\left( {\left| x \right| + \left| {x - 1} \right|} \right)dx} $$     is :

A. $$4$$
B. $$9$$  
C. $$2$$
D. $$\frac{9}{2}$$
Answer :   $$9$$
Solution :
We have,
\[\left| x \right| + \left| {x - 1} \right| = \left\{ \begin{array}{l} - x - \left( {x - 1} \right) = - 2x + 1,\,{\rm{if}}\,x \le 0\\ \,\,\,\,\,x - \left( {x - 1} \right) = 1,\,{\rm{if}}\,0 \le x \le 1\\ \,\,\,\,\,x + x - 1 = 2x - 1,\,{\rm{if}}\,x \ge 1 \end{array} \right.\]
$$\eqalign{ & \therefore \,\int_{ - 1}^3 {\left( {\left| x \right| + \left| {x - 1} \right|} \right)dx} \cr & = \int_{ - 1}^0 {\left( { - 2x + 1} \right)dx} + \int_0^1 {1\,dx} + \int_1^3 {\left( {2x - 1} \right)dx} \cr & = \left[ { - {x^2} + x} \right]_{ - 1}^0 + \left[ x \right]_0^1 + \left[ {{x^2} - x} \right]_1^3 \cr & = 9 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section