Question

The value of $$\sin \frac{\pi }{{14}} \cdot \sin \frac{{3\pi }}{{14}} \cdot \sin \frac{{5\pi }}{{14}} \cdot \sin \frac{{7\pi }}{{14}} \cdot \sin \frac{{9\pi }}{{14}} \cdot \sin \frac{{11\pi }}{{14}} \cdot \sin \frac{{13\pi }}{{14}}$$            is equal to

A. $$1$$
B. $$\frac{1}{{16}}$$
C. $$\frac{1}{{64}}$$  
D. None of these
Answer :   $$\frac{1}{{64}}$$
Solution :
The expression $$ = {\left( {\sin \frac{\pi }{{14}} \cdot \sin \frac{{3\pi }}{{14}}\sin \frac{{5\pi }}{{14}}} \right)^2} \cdot \sin \frac{{7\pi }}{{14}}.$$
Clearly, $$\sin\frac{\pi }{{14}} = \cos \left( {\frac{\pi }{2} - \frac{\pi }{{14}}} \right) = \cos \frac{{3\pi }}{7} = - \cos \left( {x - \frac{{3\pi }}{7}} \right) = - \cos \frac{{4\pi }}{7}.$$
$$\sin\frac{{3\pi }}{{14}} = \cos \frac{{2\pi }}{7},\sin \frac{{5\pi }}{7} = \cos \frac{\pi }{7}.$$
∴ value $$ = {\left( {\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7} \cdot \frac{{4\pi }}{7}} \right)^2} \cdot 1$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left\{ {\frac{{2\sin \frac{\pi }{7} \cdot \cos \frac{\pi }{7} \cdot \cos \frac{{2\pi }}{7} \cdot \cos \frac{{4\pi }}{7}}}{{2\sin \frac{\pi }{7}}}} \right\}^2} = ..... = \left( {\frac{{\sin \frac{{8\pi }}{7}}}{{8\sin \frac{\pi }{7}}}} \right) = \frac{1}{{{8^2}}}.$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section