Question

The value of $$p$$ for which the function \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \frac{x}{p}\log \left[ {1 + \frac{{{x^2}}}{3}} \right]}},\,\,\,x \ne 0\\ \,\,\,\,12{\left( {\log \,4} \right)^3},\,\,\,\,\,\,x = 0 \end{array} \right.\]        may be continuous at $$x = 0,$$  is :

A. $$1$$
B. $$2$$
C. $$3$$
D. none of these  
Answer :   none of these
Solution :
For $$f\left( x \right)$$  to be continuous at $$x = 0,$$  we should have $$\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) = 12{\left( {\log \,4} \right)^3}$$
$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} {\left( {\frac{{{4^x} - 1}}{x}} \right)^3} \times \frac{{\left( {\frac{x}{p}} \right)}}{{\left( {\sin \frac{x}{p}} \right)}} \cdot \frac{{p{x^2}}}{{\log \left( {1 + \frac{1}{3}{x^2}} \right)}} \cr & = {\left( {\log \,4} \right)^3} \cdot 1 \cdot p.\mathop {\lim }\limits_{x \to 0} \left( {\frac{{{x^2}}}{{\frac{1}{3}{x^2} - \frac{1}{{18}}{x^4} + .....}}} \right) \cr & = 3p{\left( {\log \,4} \right)^3} \cr & {\text{Hence, }}p = 4 \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section