Question

The value of $$\int_1^2 {{{\left[ {f\left\{ {g\left( x \right)} \right\}} \right]}^{ - 1}}.f'\left\{ {g\left( x \right)} \right\}.g'\left( x \right)dx,} $$         where $$g\left( 1 \right) = g\left( 2 \right),$$    is equal to :

A. 1
B. 2
C. 0  
D. none of these
Answer :   0
Solution :
$$\eqalign{ & {\text{Let }}g\left( x \right) = z \cr & {\text{Then }}I = \int_{g\left( 1 \right)}^{g\left( 2 \right)} {\frac{1}{{f\left( z \right)}}} .f'\left( z \right)dz \cr & = \left[ {\log \,f\left( z \right)} \right]_{g\left( 1 \right)}^{g\left( 2 \right)} \cr & = \log \,f\left\{ {g\left( 2 \right)} \right\} - \log \,f\left\{ {g\left( 1 \right)} \right\} \cr & = 0\,\,\,\,\,\,\,\,\left[ {\because \,g\left( 1 \right) = g\left( 2 \right)} \right] \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section