Question

The value of $$\int_0^{\frac{\pi }{4}} {\log \left( {1 + \tan \,x} \right)dx} $$     is equal to :

A. $$\frac{\pi }{8}{\log _e}2$$  
B. $$\frac{\pi }{4}{\log _e}2$$
C. $$\frac{\pi }{4}$$
D. none of these
Answer :   $$\frac{\pi }{8}{\log _e}2$$
Solution :
$$\eqalign{ & I = \int_0^{\frac{\pi }{4}} {\log } \left( {1 + \tan \,x} \right)dx \cr & \,\,\,\,\, = \int_0^{\frac{\pi }{4}} {\log \left\{ {1 + \tan \left( {\frac{\pi }{4} - x} \right)} \right\}dx} \cr & \,\,\,\,\, = \int_0^{\frac{\pi }{4}} {\log } \left\{ {1 + \frac{{1 - \tan \,x}}{{1 + \tan \,x}}} \right\}dx \cr & \,\,\,\,\, = \int_0^{\frac{\pi }{4}} {\log } \frac{2}{{1 + \tan \,x}}dx \cr & \,\,\,\,\, = \int_0^{\frac{\pi }{4}} {\log } \,2\,dx - I \cr & \therefore I = \frac{1}{2}\int_0^{\frac{\pi }{4}} {\log } \,2\,dx = \frac{1}{2}.\log \,2.\frac{\pi }{4} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section