Question

The value of $$\int_{\frac{{{\pi ^3}}}{{27}}}^{\frac{{{\pi ^3}}}{8}} {\sin \,x\,dt,} $$    where $$t = {x^3},$$   is :

A. $$\frac{{{\pi ^2}}}{6} + \left( {3 - \sqrt 3 } \right)\pi - 3$$  
B. $$\cos \frac{{{\pi ^3}}}{{27}} - \cos \frac{{{\pi ^3}}}{8}$$
C. $$\frac{{{\pi ^2}}}{6}$$
D. none of these
Answer :   $$\frac{{{\pi ^2}}}{6} + \left( {3 - \sqrt 3 } \right)\pi - 3$$
Solution :
$$\eqalign{ & I = \int_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\sin \,x.d\left( {{x^3}} \right)} = 3\int_{\frac{\pi }{3}}^{\frac{\pi }{2}} {{x^2}\sin \,x\,dx} \cr & \int {{x^2}\sin \,x\,dx} = {x^2}\left( { - \cos \,x} \right) + \int {2x\cos \,x\,dx} \cr & = - {x^2}\cos \,x + 2\left\{ {x\sin \,x - \int {\sin \,x\,dx} } \right\} \cr & = - {x^2}\cos \,x + 2x\sin \,x + 2\cos \,x \cr & \therefore I = 3\left[ { - {x^2}\cos \,x + 2x\sin \,x + 2\cos \,x} \right]_{\frac{\pi }{3}}^{\frac{\pi }{2}} \cr & \,\,\,\,\,\,\,\,\,\,\,\, = 3\pi - 3\left( { - \frac{{{\pi ^2}}}{9}.\frac{1}{2} + 2.\frac{\pi }{3}.\frac{{\sqrt 3 }}{2} + 2.\frac{1}{2}} \right) \cr & = 3\pi + \frac{{{\pi ^2}}}{6} - \sqrt 3 \pi - 3 \cr & = \frac{{{\pi ^2}}}{6} + \left( {3 - \sqrt 3 } \right)\pi - 3 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section