Question

The value of $$c + 2$$  for which the area of the figure bounded by the curve $$y = 8{x^2} - {x^5},$$   the straight lines $$x = 1$$  and $$x = c$$  and $$x$$-axis is equal to $$\frac{{16}}{3},$$ is :

A. $$1$$  
B. $$3$$
C. $$ - 1$$
D. $$4$$
Answer :   $$1$$
Solution :
$$\eqalign{ & {\text{For }}c < 1,\,\int_c^1 {\left( {8{x^2} - {x^5}} \right)} dx = \frac{{16}}{3} \cr & \Rightarrow \frac{8}{3} - \frac{1}{6} - \frac{{8{c^3}}}{3} + \frac{{{c^6}}}{6} = \frac{{16}}{3} \cr & \Rightarrow {c^3}\left[ { - \frac{8}{3} + \frac{{{c^3}}}{6}} \right] = \frac{{17}}{6} \cr} $$
Again, for $$c \geqslant 1,$$  none of the values of $$c$$ satisfy the required condition that
$$\int_1^c {\left( {8{x^2} - {x^5}} \right)} dx = \frac{{16}}{3} \Rightarrow c + 2 = 1$$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section