Question

The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin \,x} \right]dx} $$     where [.] represents the greatest integer function is-

A. $$\frac{{ - 5\pi }}{3}$$  
B. $$ - \pi $$
C. $$\frac{{ 5\pi }}{3}$$
D. $$ - 2\pi $$
Answer :   $$\frac{{ - 5\pi }}{3}$$
Solution :
$$\eqalign{ & {\text{Let}} \cr & I = \int_\pi ^{2\pi } {\left[ {2\,\sin \,x} \right]dx} \cr & \pi \leqslant x < \frac{{7\pi }}{6}\, \Rightarrow - 1 \leqslant 2\,\sin \,x < 0 \cr & \Rightarrow \left[ {2\,\sin \,x} \right] = - 1 \cr & \frac{{7\pi }}{6} \leqslant x < \frac{{11\pi }}{6}\, \Rightarrow - 2 \leqslant 2\,\sin \,x < - 1 \cr & \Rightarrow \left[ {2\,\sin \,x} \right] = - 1 \cr & \therefore \,I = \int\limits_\pi ^{\frac{{7\pi }}{6}} { - 1\,dx + } \int\limits_{\frac{{7\pi }}{6}}^{\frac{{11\pi }}{6}} { - 2\,dx + } \int\limits_{\frac{{11\pi }}{6}}^{2\pi } { - 1\,dx} \cr & = \left( { - \frac{{7\pi }}{6} + \pi } \right) + 2\left( { - \frac{{11\pi }}{6} + \frac{{7\pi }}{6}} \right) + \left( { - 2\pi + \frac{{11\pi }}{6}} \right) \cr & = - \frac{\pi }{6} - \frac{{8\pi }}{6} - \frac{\pi }{6} \cr & = - \frac{{10\pi }}{6} \cr & = \frac{{ - 5\pi }}{3} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section