Question

The value of $$\left( {^{10}{C_0}} \right) + \left( {^{10}{C_0} + {\,^{10}}{C_1}} \right) + \left( {^{10}{C_0} + {\,^{10}}{C_1} + {\,^{10}}{C_2}} \right) + ..... + \left( {^{10}{C_0} + {\,^{10}}{C_1} + {\,^{10}}{C_2} + ..... + {\,^{10}}{C_9}} \right){\text{is}}$$

A. $${2^{10}}$$
B. $$10 \cdot {2^9}$$  
C. $$10 \cdot {2^{10}}$$
D. None of these
Answer :   $$10 \cdot {2^9}$$
Solution :
$$\eqalign{ & \left( {^{10}{C_0}} \right) + \left( {^{10}{C_0} + {\,^{10}}{C_1}} \right) + \left( {^{10}{C_0} + {\,^{10}}{C_1} + {\,^{10}}{C_2}} \right) + ..... + \left( {^{10}{C_0} + {\,^{10}}{C_1} + {\,^{10}}{C_2} + ..... + {\,^{10}}{C_9}} \right) \cr & = \,10 {\,^{10}}{C_0} + 9 {\,^{10}}{C_1} + 8 {\,^{10}}{C_2} + ..... + {\,^{10}}{C_9} \cr & = {\,^{10}}{C_1} + 2{\,^{10}}{C_2} + 3{\,^{10}}{C_3} + ..... + 10{\,^{10}}{C_{10}} \cr & = \,\sum\limits_{r = 1}^{10} {r{\,^{10}}} {C_r} = 10\sum\limits_{r = 1}^{10} {^9} {C_{r - 1}} = 10 \cdot {2^9} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section