Question

The value of $$\int\limits_1^a {\left[ x \right]f'\left( x \right)} dx,\,a > 1$$     where $$\left[ x \right]$$ denotes the greatest integer not exceeding $$x$$ is-

A. $$af\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$
B. $$\left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$  
C. $$\left[ a \right]f\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( a \right)} \right\}$$
D. $$af\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( a \right)} \right\}$$
Answer :   $$\left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$
Solution :
Let $$a=k+ h$$   where $$k$$ is an integer such that $$\left[ a \right] = k$$   and $$0 \leqslant h < 1$$
$$\eqalign{ & \therefore \int\limits_1^a {\left[ x \right]f'\left( x \right)dx} = \int\limits_1^2 {1\,f'\left( x \right)dx} + \int\limits_2^3 {2\,f'\left( x \right)dx} + .....\int\limits_{k - 1}^k {\left( {k - 1} \right)dx} + \int\limits_k^{k + h} {k\,f'\left( x \right)dx} \cr & = \left\{ {f\left( 2 \right) - f\left( 1 \right)} \right\} + 2\left\{ {f\left( 3 \right) - f\left( 2 \right)} \right\} + 3\left\{ {f\left( 4 \right) - f\left( 3 \right)} \right\} + ..... + \left( {k - 1} \right)\left\{ {f\left( k \right) - f\left( {k - 1} \right)} \right\} + k\left\{ {f\left( {k + h} \right) - f\left( k \right)} \right\} \cr & = - f\left( 1 \right) - f\left( 2 \right) - f\left( 3 \right)..... - f\left( k \right) - k\,f\left( {k + h} \right) \cr & = \left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + f\left( 3 \right) + .....f\left( {\left[ a \right]} \right)} \right\} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section