Question

The value of $$\int_0^{{{\sin }^2}x} {{{\sin }^{ - 1}}\sqrt t } \,dt + \int_0^{{{\cos }^2}x} {{{\cos }^{ - 1}}\sqrt t } \,dt{\text{ is :}}$$

A. $$\pi $$
B. $$\frac{\pi }{2}$$
C. $$\frac{\pi }{4}$$  
D. $$1$$
Answer :   $$\frac{\pi }{4}$$
Solution :
$$\eqalign{ & {\text{Let }}{I_1} = \int_0^{{{\sin }^2}x} {{{\sin }^{ - 1}}\sqrt t } \,dt \cr & {\text{Put }}t = {\sin ^2}u \Rightarrow dt = 2\,\sin \,u\,\cos \,u\,du \Rightarrow dt = \sin \,2u\,du \cr & \therefore \,{I_1} = \int_0^x {u\,\sin \,2u\,du} \cr & {\text{Let }}{I_2} = \int_0^{{{\cos }^2}x} {{{\cos }^{ - 1}}\sqrt t } \,dt \cr & {\text{Put }}t = {\cos ^2}v \Rightarrow dt = - 2\,\cos \,v\,\sin \,v\,dv \Rightarrow dt = - \sin \,2v\,dv \cr & \therefore \,{I_2} = \int_{\frac{\pi }{2}}^x {v\left( { - \sin \,2v} \right)\,dv} \cr & = - \int_{\frac{\pi }{2}}^x {v\,\sin \,2v\,dv} \cr & = - \int_{\frac{\pi }{2}}^x {u\,\sin \,2u\,du\,\,\,\,\,\,\,\,\left[ {{\text{change of variable}}} \right]} \cr & \therefore \,I = {I_1} + {I_2} \cr & = \int_0^x {u\,\sin \,2u\,du} - \int_{\frac{\pi }{2}}^x {u\,\sin \,2u\,du} \cr & = \int_0^{\frac{\pi }{2}} {u\,\sin \,2u\,du} + \int_{\frac{\pi }{2}}^x {u\,\sin \,2u\,du} - \int_{\frac{\pi }{2}}^x {u\,\sin \,2u\,du} \cr & = \int_0^{\frac{\pi }{2}} {u\,\sin \,2u\,du} \cr & = \frac{\pi }{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {{\text{Integrate by parts}}} \right] \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section