Question

The value of $$\int\limits_0^\pi {{{\left| {\cos \,x} \right|}^3}dx}, $$   is :

A. $$0$$
B. $$\frac{4}{3}$$  
C. $$\frac{2}{3}$$
D. $$ - \frac{4}{3}$$
Answer :   $$\frac{4}{3}$$
Solution :
$$\eqalign{ & I = \int\limits_0^\pi {{{\left| {\cos \,x} \right|}^3}dx} = 2\int\limits_0^{\frac{\pi }{2}} {{{\cos }^3}\,x\,dx} \cr & = \frac{2}{4}\int\limits_0^{\frac{\pi }{2}} {\left( {3\,\cos \,x + \cos \,3x} \right)dx} \cr & \left[ {\lambda \,\cos \,3\theta = 4\,{{\cos }^3}\theta - 3\,\cos \,\theta } \right] \cr & = \frac{1}{2}\left[ {3\,\sin \,x + \frac{{\sin \,3x}}{3}} \right]_0^{\frac{\pi }{2}} \cr & = \frac{1}{2}\left( {3 - \frac{1}{3}} \right) \cr & = \frac{4}{3} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section