Question

The value of $$\int\limits_0^1 {\frac{{dx}}{{{e^x} + e}}} $$   is equal to :

A. $$\frac{1}{e}\log \left( {\frac{{1 + e}}{2}} \right)$$  
B. $$\log \left( {\frac{{1 + e}}{2}} \right)$$
C. $$\frac{1}{e}\log \left( {1 + e} \right)$$
D. $$\log \left( {\frac{2}{{1 + e}}} \right)$$
Answer :   $$\frac{1}{e}\log \left( {\frac{{1 + e}}{2}} \right)$$
Solution :
$$\eqalign{ & {\text{Let }}I = \int\limits_0^1 {\frac{{dx}}{{{e^x} + e}}} = \int\limits_0^1 {\frac{{{e^x}dx}}{{{e^x}\left( {{e^x} + e} \right)}}} \cr & {\text{Put }}{e^x} = t \Rightarrow {e^x}dx = dt \cr & I = \int\limits_1^e {\frac{{dt}}{{t\left( {t + e} \right)}}} \cr & = \frac{1}{e}\int\limits_1^e {\left( {\frac{1}{t} - \frac{1}{{t + e}}} \right)} \cr & = \frac{1}{e}\int\limits_1^e {\frac{1}{t}dt} - \frac{1}{e}\int\limits_1^e {\frac{1}{{t + e}}dt} \cr & = \frac{1}{e}\left[ {\log \,t} \right]_1^e - \frac{1}{e}\left[ {\log \left( {t + e} \right)} \right]_1^e \cr & = \frac{1}{e}\left[ {\log \,t - \log \left( {t + e} \right)} \right]_1^e \cr & = \frac{1}{e}\left[ {\log \left( {\frac{t}{{t + e}}} \right)} \right]_1^e \cr & = \frac{1}{e}\left[ {\log \left( {\frac{e}{{2e}}} \right) - \log \left( {\frac{1}{{1 + e}}} \right)} \right] \cr & = \frac{1}{e}\log \left[ {\frac{{\frac{1}{2}}}{{\frac{1}{{\left( {1 + e} \right)}}}}} \right] \cr & = \frac{1}{e}\log \left( {\frac{{1 + e}}{2}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section