Question

The value of $$\int\limits_0^1 {\frac{{8\log \left( {1 + x} \right)}}{{1 + {x^2}}}} dx,$$    is-

A. $$\frac{\pi }{8}\log \,2$$
B. $$\frac{\pi }{2}\log \,2$$
C. $$\log\,2$$
D. $$\pi \,\log \,2$$  
Answer :   $$\pi \,\log \,2$$
Solution :
$$\eqalign{ & I = \int\limits_0^1 {\frac{{8\log \left( {1 + x} \right)}}{{1 + {x^2}}}} dx \cr & {\text{Put}}\,x = \tan \,\theta , \cr & \therefore \frac{{dx}}{{d\theta }} = {\sec ^2}\theta \Rightarrow dx = {\sec ^2}\theta \,d\theta \cr & \therefore I = 8\int\limits_0^{\frac{\pi }{4}} {\frac{{\log \left( {1 + \tan \,\theta } \right)}}{{1 + {{\tan }^2}\theta }}} .{\sec ^2}\theta \,d\theta \cr & I = 8\int\limits_0^{\frac{\pi }{4}} {\log \left( {1 + \tan \,\theta } \right)} \,d\theta .....{\text{(i)}} \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\log \left[ {1 + \tan \,\left( {\frac{\pi }{4} - \theta } \right)} \right]} d\theta \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\log \left[ {1 + \frac{{1 - \tan \,\theta }}{{1 + \tan \,\theta }}} \right]} d\theta \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\log \left[ {\frac{2}{{1 + \tan \,\theta }}} \right]d\theta } \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\left[ {\log 2 - \log \left( {1 + \tan \,\theta } \right)} \right]d\theta } \cr & I = 8.\left( {\log \,2} \right)\left[ x \right]_0^{\frac{\pi }{4}} - 8\int\limits_0^{\frac{\pi }{4}} {\log \left( {1 + \tan \,\theta } \right)d\theta } \cr & I = 8.\frac{\pi }{4}.\log \,2 - I\,\,\,\,\left[ {{\text{from equation (i)}}} \right] \cr & \Rightarrow 2I = 2\pi \,\log \,2, \cr & \therefore I = \pi \,\log \,2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section