Question

The term independent of $$x$$ in expansion of $${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$$     is

A. 4
B. 120
C. 210  
D. 310
Answer :   210
Solution :
Given expression can be written as
$$\eqalign{ & {\left( {\left( {{x^{\frac{1}{3}}} + 1} \right) - \left( {\frac{{\sqrt x + 1}}{{\sqrt x }}} \right)} \right)^{10}} \cr & = {\left( {{x^{\frac{1}{3}}} + 1 - 1 - \frac{1}{{\sqrt x }}} \right)^{10}} \cr & = {\left( {{x^{\frac{1}{3}}} - {x^{ - \frac{1}{2}}}} \right)^{10}} \cr} $$
General term $$ = {T_{r + 1}} = {\,^{10}}{C_r}{\left( {{x^{\frac{1}{3}}}} \right)^{10 - r}}{\left( { - {x^{ - \frac{1}{2}}}} \right)^r}$$
$$ = {\,^{10}}{C_r}{x^{\frac{{10 - r}}{3}}}.{\left( { - 1} \right)^r}.{x^{ - \frac{r}{2}}} = {\,^{10}}{C_r}{\left( { - 1} \right)^r}.{x^{\frac{{10 - r}}{3}.\frac{r}{2}}}$$
Term will be independent of $$x$$ when $$\frac{{10 - r}}{3} - \frac{r}{2} = 0$$
$$ \Rightarrow \,\,r = 4$$
So, required term $$ = {T_5} = {\,^{10}}{C_4} = 210$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section