Question
The temperature of an open room of volume $$30\,{m^3}$$ increases from $${17^ \circ }C$$ to $${27^ \circ }C$$ due to sunshine. The atmospheric pressure in the room remains $$1 \times {10^5}\,Pa.$$ If $${n_i}$$ and $${n_f}$$ are the number of molecules in the room before and after heating, then $${n_f} - {n_i}$$ will be:
A.
$$2.5 \times {10^{25}}$$
B.
$$ - 2.5 \times {10^{25}}$$
C.
$$ - 1.61 \times {10^{23}}$$
D.
$$1.38 \times {10^{23}}$$
Answer :
$$ - 2.5 \times {10^{25}}$$
Solution :
Given : Temperature $${T_i} = 17 + 273 = 290\,K$$
Temperature $${T_f} = 27 + 273 = 300\,K$$
Atmospheric pressure, $${P_0} = 1 \times {10^5}\,Pa$$
Volume of room, $${V_0} = 30\,{m^3}$$
Difference in number of molecules, $${N_f} - {N_i} = ?$$
The number of molecules
$$\eqalign{
& \Rightarrow \,\,N = \frac{{PV}}{{RT}}\left( {{N_0}} \right) \cr
& \therefore \,\,{N_f} - {N_i} = \frac{{{P_0}{V_0}}}{R}\left( {\frac{1}{{{T_f}}} - \frac{1}{{{T_i}}}} \right){N_0} \cr
& = \frac{{1 \times {{10}^5} \times 30}}{{8.314}} \times 6.023 \times {10^{23}}\left( {\frac{1}{{300}} - \frac{1}{{290}}} \right) \cr
& = - 2.5 \times {10^{25}} \cr} $$