Question

The sum to infinite term of the series $$1 + \frac{2}{3} + \frac{6}{{{3^2}}} + \frac{{10}}{{{3^3}}} + \frac{{14}}{{{3^4}}} + .....{\text{ is}}$$

A. 3  
B. 4
C. 6
D. 2
Answer :   3
Solution :
$$\eqalign{ & {\text{We have}} \cr & S = 1 + \frac{2}{3} + \frac{6}{{{3^2}}} + \frac{{10}}{{{3^3}}} + \frac{{14}}{{{3^4}}} + .....\infty \,\,\,\,\,\,......\left( 1 \right) \cr & {\text{Multiplying both sides by }}\frac{1}{3}{\text{ we get}} \cr & \frac{1}{3}S = \frac{1}{3} + \frac{2}{{{3^2}}} + \frac{6}{{{3^3}}} + \frac{{10}}{{{3^4}}} + .....\infty \,\,\,\,\,\,\,\,\,\,......\left( 2 \right) \cr & {\text{Subtracting eqn}}{\text{.}}\left( 2 \right){\text{from eqn}}{\text{.}}\left( 1 \right){\text{we get}} \cr & \frac{2}{3}S = 1 + \frac{1}{3} + \frac{4}{{{3^2}}} + \frac{4}{{{3^3}}} + \frac{4}{{{3^4}}} + .....\infty \cr & \Rightarrow \,\,\frac{2}{3}S = \frac{4}{3} + \frac{4}{{{3^2}}} + \frac{4}{{{3^3}}} + \frac{4}{{{3^4}}} + .....\infty \cr & \Rightarrow \,\,\frac{2}{3}S = \frac{{\frac{4}{3}}}{{1 - \frac{1}{3}}} = \frac{4}{3} \times \frac{3}{2} \cr & \Rightarrow \,\,S = 3 \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section