Question

The sum of the radii of inscribed and circumscribed circles for an $$n$$ sided regular polygon of side $$a,$$ is

A. $$\frac{a}{4}\cot \left( {\frac{\pi }{{2n}}} \right)$$
B. $$a\cot \left( {\frac{\pi }{{n}}} \right)$$
C. $$\frac{a}{2}\cot \left( {\frac{\pi }{{2n}}} \right)$$  
D. $$a\cot \left( {\frac{\pi }{{2n}}} \right)$$
Answer :   $$\frac{a}{2}\cot \left( {\frac{\pi }{{2n}}} \right)$$
Solution :
$$\eqalign{ & \tan \left( {\frac{\pi }{4}} \right) = \frac{a}{{2r}};\sin \left( {\frac{\pi }{n}} \right) = \frac{a}{{2R}} \cr & r + R = \frac{a}{2}\left[ {\cot \frac{\pi }{n} + {\text{cosec}}\frac{\pi }{n}} \right] \cr} $$
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & = \frac{a}{2}\left[ {\frac{{\cos \frac{\pi }{n} + 1}}{{\sin \frac{\pi }{n}}}} \right] \cr & = \frac{a}{2}\left[ {\frac{{2{{\cos }^2}\frac{\pi }{{2n}}}}{{2\sin \frac{\pi }{{2n}}\cos \frac{\pi }{{2n}}}}} \right] \cr & = \frac{a}{2}\cot \frac{\pi }{{2\pi }} \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section