Question

The sum of the infinite series $${\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 2 }}} \right) + {\sin ^{ - 1}}\left( {\frac{{\sqrt 2 - 1}}{{\sqrt 6 }}} \right) + {\sin ^{ - 1}}\left( {\frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt {12} }}} \right) + ..... + ..... + {\sin ^{ - 1}}\left( {\frac{{\sqrt n - \sqrt {\left( {n - 1} \right)} }}{{\sqrt {\left\{ {n\left( {n + 1} \right)} \right\}} }}} \right) + .....$$                     is

A. $$\frac{\pi }{8}$$
B. $$\frac{\pi }{4}$$
C. $$\frac{\pi }{2}$$  
D. $$\pi$$
Answer :   $$\frac{\pi }{2}$$
Solution :
$$\eqalign{ & \because {T_r} = {\sin ^{ - 1}}\left( {\frac{{\sqrt r - \sqrt {\left( {r - 1} \right)} }}{{\sqrt {r\left( {r + 1} \right)} }}} \right) \cr & = {\tan ^{ - 1}}\left( {\frac{{\sqrt r - \sqrt {\left( {r - 1} \right)} }}{{1 + \sqrt r \sqrt {\left( {r - 1} \right)} }}} \right) \cr & {S_n} = \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {\frac{{\sqrt r - \sqrt {\left( {r - 1} \right)} }}{{1 + \sqrt r \sqrt {\left( {r - 1} \right)} }}} \right)} \cr & = \sum\limits_{r = 1}^n {\left\{ {{{\tan }^{ - 1}}\sqrt r - {{\tan }^{ - 1}}\sqrt {\left( {r - 1} \right)} } \right\}} \cr & = {\tan ^{ - 1}}\sqrt n - {\tan ^{ - 1}}\sqrt 0 = {\tan ^{ - 1}}\sqrt n - 0 \cr & \therefore {S_\infty } = {\tan ^{ - 1}}\infty = \frac{\pi }{2} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section