Question

The sum of the co-efficients of all the integral powers of $$x$$ in the expansion of $${\left( {1 + 2\sqrt x } \right)^{40}}$$   is

A. $${3^{40}} + 1$$
B. $${3^{40}} - 1$$
C. $$\frac{1}{2}\left( {{3^{40}} - 1} \right)$$
D. $$\frac{1}{2}\left( {{3^{40}} + 1} \right)$$  
Answer :   $$\frac{1}{2}\left( {{3^{40}} + 1} \right)$$
Solution :
The co-efficients of the integral powers of $$x$$ are $$^{40}{C_0},{\,^{40}}{C_2} \cdot {2^2},{\,^{40}}{C_4} \cdot {2^4},.....,{\,^{40}}{C_{40}} \cdot {2^{40}}.$$
$$\eqalign{ & {\left( {1 + 2} \right)^{40}} = {\,^{40}}{C_0} + {\,^{40}}{C_1} \cdot 2 + {\,^{40}}{C_2} \cdot {2^2} + ..... + {\,^{40}}{C_{40}} \cdot {2^{40}}. \cr & {\left( {1 - 2} \right)^{40}} = {\,^{40}}{C_0} - {\,^{40}}{C_1} \cdot 2 - {\,^{40}}{C_2} \cdot {2^2} - ..... + {\,^{40}}{C_{40}} \cdot {2^{40}}. \cr} $$
Adding, $${3^{40}} + 1 = 2 \times \left( {{\text{required sum}}} \right).$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section