Question

The sum of $$i - 2 - 3i + 4....\,{\text{upto }}100\,{\text{terms,}}$$       where $$i = \sqrt { - 1} $$   is

A. $$50\left( {1 - i} \right)$$  
B. $$25i$$
C. $$25\left( {1 + i} \right)$$
D. $$100\left( {1 - i} \right)$$
Answer :   $$50\left( {1 - i} \right)$$
Solution :
Let $$S = i - 2 - 3i + 4 + 5i.... 100\,{\text{terms,}}$$
$$\eqalign{ & \Rightarrow S = i + 2{i^2} + 3{i^3} + 4{i^4} + 5{i^5}.... + 100{i^{100}} \cr & \Rightarrow iS = {i^2} + 2{i^3} + 3{i^4}.... + 99{i^{100}} + 100{i^{101}} \cr & \Rightarrow S - iS = i + {i^2} + {i^3} + {i^4} + .... + {i^{100}} - 100{i^{101}} \cr & \Rightarrow S\left( {1 - i} \right) = \frac{{i\left( {1 - {i^{100}}} \right)}}{{1 - i}} - 100{i^{101}} \cr & \Rightarrow S\left( {1 - i} \right) = - 100i \cr & \Rightarrow S = \frac{{ - 100i}}{{1 - i}} = - 50i\left( {1 + i} \right) = - 50\left( {i - 1} \right) \cr & = 50\left( {1 - i} \right) \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section